
Optimal Policy Switching Algorithms for Reinforcement
Learning

Gheorghe Comanici
McGill University

Montreal, QC, Canada
gheorghe.comanici@mail.mcgill.ca

Doina Precup
McGill University

Montreal, QC Canada
dprecup@cs.mcgill.ca

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms, Theory

Keywords
Markov Decision Processes, reinforcement learning, temporal ab-
straction, policy gradient

ABSTRACT
We address the problem of single-agent, autonomous sequential
decision making. We assume that some controllers or behavior
policies are given as prior knowledge, and the task of the agent
is to learn how to switch between these policies. We formulate the
problem using the framework of reinforcement learning and op-
tions (Sutton, Precup & Singh, 1999; Precup, 2000). We derive
gradient-based algorithms for learning the termination conditions
of options, with the goal of optimizing the expected long-term re-
turn. We incorporate the proposed approach into policy-gradient
methods with linear function approximation.

1. INTRODUCTION
Temporal abstraction methods offer a principled way to speed

up reinforcement learning in large domains and to express prior
knowledge (e.g., Sutton, Precup & Singh, 1999; Dietterich, 2000;
Parr & Russell, 1998). Much of the initial work in this field as-
sumed that the structure of the abstraction itself is given, usually in
the form of a hierarchy, or subgoals. This is part of the prior knowl-
edge of the designer of the system. Once this structure is specified,
internal policies at different levels of abstraction can be learned us-
ing standard reinforcement learning methods. Planning and learn-
ing methods that take advantage of these abstractions, providing
significant efficiency gains, have been thoroughly investigated (see
Barto & Mahadevan, 2003, for an overview).

Recent research has focused more on discovering the desired ab-
stractions. Several papers (e.g. McGovern & Barto, 2001; Men-
ache, Mannor & Shimkin, 2002; Simsek, Wolfe & Barto, 2005)

Cite as: Optimal Policy Switching Algorithms for Reinforcement Learn-
ing, Gheorghe Comanici and Doina Precup, Proc. of 9th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2010), van
der Hoek, Kaminka, Lespérance, Luck and Sen (eds.), May, 10–14, 2010,
Toronto, Canada, pp.�
Copyright c© 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

use the idea of “bottleneck" states, which are often defined heuris-
tically on the basis of visitation frequencies. HEXQ (Hengst, 2002)
uses a different heuristic to define subgoals, based on the frequency
of change in the values of state variables. Another line of work has
been devoted to finding good abstractions in a factored MDP, based
on a current, given model. The VISA algorithm for learning options
(Jonsson & Barto, 2006) and HI-MAT, which learns MAXQ hierar-
chies (Mehta, Ray, Tadepalli & Dietterich, 2008) focus on factored
MDPs. In all these cases, the algorithms have to learn the entire
hierarchy, including the lower-level behavior policies.

In this paper, we present a different approach, in which we as-
sume that the low-level behavior policies are given as prior knowl-
edge. For example, in robotics, low-level controllers are often pre-
programmed and provided to the robot. An automated pilot will be
using controllers for stabilizing and moving the aircraft. In finan-
cial applications, trading policies are specified, as they usually have
to conform to certain company restrictions. What is not known, or
harder to specify, is how long a particular strategy should be used,
and when it would be beneficial to switch to a different strategy.
Sutton, Precup & Singh (1999) provide an approach to this prob-
lem based on the idea that an option should be interrupted if a bet-
ter way of behaving is available. A similar effect is achieved by the
“polling execution" framework in MAXQ. Our approach computes
termination conditions for each policy that explicitly optimize a de-
sired performance criterion. As is usual in reinforcement learning,
we are most interested in optimizing the expected discounted future
return. However, the problem formulation that we propose is more
general, allowing, for example, the optimization of the variance of
the return obtained, or the minimization of the probability of hit-
ting particular “undesirable" states. Such guarantees are useful in
safety-critical applications.

We provide an alternative formulation of the termination condi-
tion of options, which is better suited computationally for our goal.
We derive algorithms for computing the parameters that determine
termination through gradient descent, and we demonstrate the ideas
on a simple example. The algorithms we propose are used in par-
allel with learning the values of the options, and do not necessitate
extra data or a separate computation phase. Unlike other methods
for learning the hierarchy, we do not rely on an existing model of
the MDP.

One of the major drawbacks of subgoal approaches to create op-
tions is the difficulty of using them with function approximation
methods, which are needed in large problems. Instead, our pro-
posed approach relies on policy gradient methods (Sutton, McAllester
& Singh, 2000), which are naturally suited to work in large or con-
tinuous state spaces.

The paper is structured as follows. In Sec. 2 we define the no-
tation and review the options framework. Sec. 3 presents an alter-

709

709-714

native formulation of the termination condition for options, better
suited to our computational goals. Sec. 4 provides a general policy
gradient approach to the problem of learning termination condi-
tions that optimize the value function, and shows its convergence
properties; in Sec. 5, this approach is customized by introducing
a specific parametric form for option termination conditions Sec.
7 presents an empirical illustration. In Sec. 8 we conclude and
discuss avenues for future work.

2. BACKGROUND
We adopt the framework of Markov Decision Processes, in which

the environment is represented as a tuple 〈S,A,P : S × A × S →
[0,1],R : S × A → R,γ〉 where S is the set of states, A is the set
of actions, P is the transition model, with Pa

ss′ denoting the con-
ditional probability of a transition to state s′ given current state s
and action a, and R denotes the reward function, with Ra

s denoting
the immediate expected reward for state s and action a. A policy
π : S×A → [0,1] specifies a way of behaving for the agent. The
state-action value function of a policy, Qπ : S×A → R, is defined
based on subsequent rewards rt+1,rt+2, ...:

Qπ(s,a) = Eπ [rt+1 + γrt+2 + · · · |st = s,at = a]

and can be obtained as the solution to the following system of linear
equations:

Qπ(s,a) = Ra
s + γ∑

s′
Pa

ss′ ∑
a′

π(s′,a′)Qπ(s′,a′) (1)

In an MDP, there is a unique, deterministic policy, π∗, whose state-
action value function, Q∗ is optimal for all state-action pairs:

Q∗(s,a) = max
π

Qπ(s,a).

The optimal value function satisfies the set of Bellman optimality
equations :

Q∗(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′ max
a′∈A

Q∗(s′,a′),∀s ∈ S,a ∈ A

with maxa∈A Q∗(s,a) = V ∗(s) being the optimal value of state s.
Well-known incremental algorithms, such as Sarsa and Q-learning,
can be used to estimate these values (see Sutton & Barto, 1998, for
an overview).

Temporally extended actions can be modeled in an MDP using
the framework of options (Sutton, Precup & Singh, 1999; Precup,
2000). An option o = 〈I ,π,β〉 consists of an initiation set I ⊆ S,
an internal policy π : S × A → [0,1], and a termination function
β : S → [0,1], where β(s) is the probability that o terminates upon
entering state s. Sutton, Precup & Singh (1999) showed that the
introduction of a set of options O in an MDP induces a special type
of Semi-Markov Decision Process (SMDP), 〈S,O,P : S×O ×S →
[0,1],R : S×O → R〉, where:

Ro
s = E [rt+1 + γrt+2 + . . . |st = s,π,β] (2)

is the expected discounted reward received while option o is exe-
cuting, and

Po
ss′ =

∞

∑
k=1

γkPo
ss′,k (3)

is the discounted probability of finishing the option at state s′, after
starting it in state s. Here, Po

ss′,k denotes the probability that the

option will end at s′ in exactly k time steps:

Po
ss′,k = E

[
k

∏
i=1

(1−βt+i−1)βt+kδ(st+k = s′)|st = s,o

]
(4)

where βt denotes the random variable β(st) and δ is an indicator
variable, equal to 1 if the associated condition is true, and 0 other-
wise.

Let μ : S×O → [0,1] denote a policy over options, with μ(s,o)
denoting the probability that option o is initiated at state s. If s
∈ I,
then μ(s,o) = 0. For any such policy, a state-option value function,
Qμ can be defined, in a manner similar to the state-action value
function, and it obeys the following set of Bellman equations:

Qμ(s,o) = Ro
s + ∑

s′∈S

(
Po

ss′ ∑
o′

μ(s′,o′)Qμ(s′,o′)

)
. (5)

In this SMDP, there exists an optimal policy, μ∗, whose associated
value function Qμ∗ obeys a set of Bellman-style optimality equa-
tions:

Qμ∗(s,o) = Ro
s + ∑

s′∈S

(
Po

ss′ max
o′∈O

Qμ∗(s′,o′)
)

Sutton et al. provide several incremental algorithms for comput-
ing Qμ∗ incrementally from sample trajectories, both in the case in
which the options are followed to termination (SMDP Q-learning)
and in the case when the options are not always followed (intra-
option Q-learning). They also provide algorithms for learning the
internal policies π when a set of “desirable" termination conditions
(or subgoals) are specified.

3. OPTION TERMINATION CONDITIONS
Our goal in this paper is to find termination conditions for op-

tions such as to optimize Qμ∗ . The idea of interruption, explored
in prior work, is that if the agent arrives at a given state s while
executing some option o, and notices that its predicted value for
continuing is exceeded by the estimated value of a different op-
tion, Qμ(s,o′), then it should switch to the better option. We want
to capture the same idea that the termination condition should be
chosen as to improve the value of the option policy. Intuitively,
this should be feasible, as Qμ∗ is a continuous function of the op-
tion termination conditions β, as can be seen from equations (5),
(2), (3) and (4). Hence, one could potentially take its derivatives
with respect to these parameters and establish a gradient-based al-
gorithm to optimize them. Unfortunately, the dependence on β is
rather complicated, involving products, so this route cannot be fol-
lowed in a computationally efficient way. However, if one could
formulate the problem differently, for example by parameterizing
directly the probability of terminating at or before some time step k,
the dependence of Qμ on such a quantity would be simple, and tak-
ing derivatives could be much easier. Moreover, while β depends
on the MDP state, the idea of parameterizing the likelihood of ter-
minating by a certain point in a trajectory can be easily general-
ized in partially observable environments, or in large environments
where state-dependent termination is infeasible. In this section, we
present an equivalent formulation of the option termination condi-
tions which is equivalent to the original formulation, but captures
the idea of terminating at or before a certain point in a trajectory.

Given an option o = 〈I ,π,β〉, we denote by H the set of all finite
histories that can be generated using π from any state in I . The set
H is equipped with a partial order:

∀h1,h2 ∈ H, h1 ≤ h2 if h1 is a subsequence of h2

Note that for every history h = (s1,a1,r1,s2,a2,r2, ...,sn,an,rn),
there exists a corresponding increasing sequence h1,h2, ...,hn, where
hi = (s1,a1,r1,s2,a2,r2, ...,si,ai,ri) and hn = h. For notational
convenience, let h− =(s1,a1,r1,s2,a2,r2, ...,sn−1,an−1,rn−1), and
h⊥ be the empty history.

710

We can exploit the partial order structure on H to replace the β
function with an equivalent monotone measure. That is, we will
define monotone functions τ : H → [0,1], such that:

• τ(h⊥) = 0

• ∀ h ∈ H,h
= h⊥ τ(h−) ≤ τ(h)

• ∀ (h1 ≤ h2 ≤ ≤ hn ≤ ...), limn→∞ τ(hn) ≤ 1

Next we prove the equivalence of these types of maps with the usual
option termination conditions of options expressed using β.

THEOREM 3.1. Given an option o = 〈I ,π,β〉, the map τ defined
below is monotone and maps H to [0,1]:

τ(h⊥) = 0

τ(h) = τ(h−)(1−β(h))+β(h) = τ(h−)+(1− τ(h−))β(h)∀ h
= h⊥

Moreover, τ(h) = 1 ⇐⇒ τ(h−) = 1 or β(h) = 1.

Proof: The base case satisfies all conditions. Now suppose τ(h−)∈
[0,1]. Since 0 ≤ β(h) ≤ 1, clearly τ(h) ≥ τ(h−). So τ is monotone.

Now, since 0 ≤ τ(h−) ≤ 1, we can define a random variable
with Bernoulli distribution X ∼ Bernoulli(τ(h−)). If f (0) = 1 and
f (1) = (β(h)), then

τ(h) = E{ f (X)|X ∼ Bernoulli(τ(h−))}
Since f ∈ [0,1], it follows that τ(h) ∈ [0,1].

The result follows recursively for the entire set H.
Now, for the second part, assume τ(h) = 1 and τ(h−) < 1. Then

1 = τ(h−)+(1− τ(h−))β(h)
1− τ(h−) = (1− τ(h−))β(h)

β(h) =
1− τ(h−)
1− τ(h−)

= 1

The opposite implication is trivial. �

COROLLARY 3.2. There is a bijection from the set of monotone
maps H → [0,1] to the set of β termination functions for an option.

Proof Given τ, set

β(h) =
τ(h)− τ(h−)

1− τ(h−)

Notice that this is well defined. If τ(h−) = 1, then by the previous
theorem, there exists a sub-history h̄ of h,not necessarily h−, such
that β(h̄) = 1, so that termination would have happened before, and
β does not have to be defined for h. �

What does τ stand for? To understand this, consider any infinite
seqence generated by the policy of an option h1,h2,h3,,hn,
Now, this interaction is independent of termination decision. At
the same time, termination is independent of the future, so we can
compute the random variable ιo that stands for the termination his-
tory based on τ, or the corresponding β function. Then, clearly,

P(ιo = h⊥) = 0

P(ιo ∈ {h1,h2, ...,hn}) = P(ιo ∈ {h1,h2, ...,hn−1})+P(ιo = hn) =
= P(ιo ∈ {h1,h2, ...,hn−1})
+P(ιo
∈ {h1,h2, ...,hn−1})P(ιo = hn|ιo
∈ {h1,h2, ...,hn−1}) =
= P(ιo ∈ {h1,h2, ...,hn−1})+P(ιo
∈ {h1,h2, ...,hn−1})β(hn) =

So it follows that τ(hn) = P(ιo ∈ {h1,h2, ...,hn}).

4. POLICY GRADIENT METHODS
Sutton, McAllester & Singh (2000) introduced an approach to

optimal control based on using a parameterized policy, whose pa-
rameters get adjusted in such a way as to optimize the value func-
tion. In particular, they provide a scheme for locally convergent
algorithms when the policy is represented as a Gibbs distribution in
a linear combination of state-action features. Note that the methods
presented are not compatible with formulations in which we only
use function approximators for the state-action pairs, and policies
are extracted using these approximators. It is essential to have a
differentiable function approximator for the policy itself.

The central idea behind the methods presented in the latter pa-
per is the compatibility relation between the value function and the
policy

∂ fw(s,a)
∂w

=
∂πθ(s,a)

∂θ
1

πθ(s,a)

If fw(s,a) is a locally optimal approximator for the return under
policy π starting with the pair (s,a), and the above compatibility
condition is satisfied, then the gradient has the following nice form:

∂ρ
∂θ

= ∑
s,a

dπ(s)
∂πθ(s,a)

∂θ
fw(s,a)

where ρ denotes, in particular, the average return of the policy (per
time step). This gradient indicates the direction in which the policy
parameters have to move in order to improve the return.

We will now generalize this approach to allow for more general
policy “decisions". This is important, because in our case, we want
to adjust the decision of when to terminate the option, as well as
what other option should take control.

To generalize the results, we will use a new notation. In the
usual presentation, there are two important entities: states s and
state-action pairs (s,a). The first one consists of information that is
necessary for the policy, but it gets updated from the environment.
It can be thought of the “non-controlled" state in the MDP (over
which the agent has no say). The second entity represents the infor-
mation controlled by an agent. We will think of an MDP more gen-
erally as a control scheme which contains a non-control state space
S, a control space C, and a transition function P : C × S → [0,1].
There will also be a reward function, R : C×S → R. At each time
step t, the state st and Pcs = Pr{st+1 = s|ct = c} determines the
non-control for the next step, and a numeric reward rt = R(ct ,st+1).
Based on st , the agent has the responsibility to choose ct , using
some randomized policy π : S×C → [0,1]. Still, the choice will
have to be restricted by a function A : S → 2C. That is, A will cap-
ture the freedom that an agent has in an environment: if c
∈ A(s),
then π(s,c) = 0. The performance of a policy from a start control
state is evaluated using a function ρ : π → (C → R), which is usu-
ally dependent on R. The most used performance measures are the
average reward and the discounted long term reward formulations.
The first one has two main advantages: it is not parameterized and
does not depend on the start state, as shown bellow,

ρ(π,s0) = ∑
s

dπ,s0(s)∑
c

πscRsc

where dπ,s0(s) = limt→∞ Pr{st = s|π}. The second formulation will
be parameterized by γ∈ (0,1) and will take the same form, with the
exception that dπ,s0(s) = ∑∞

t=0 γtPr{st = s|π,s0}. The main goal is
to find the policy that complies with the restriction function A and
generates the best performance.

Fortunately, under the new formulation, which is more general
that the usual one, all results in the Sutton et al. paper still hold.

711

Theorem 1:

∂ρ
∂θ

= ∑
s,c

dπ,s0(s)
∂πθ(s,c)

∂θ
V π(c)

where, in the average reward formulation

V π(c) =
∞

∑
t=0

E{rt −ρ(π)|c0 = c,π}

and in the discounted long-term return formulation

V π(c) =
∞

∑
t=0

γtE{rt |c0 = c,π}

Proof: Let V π(s) = ∑c π(s,c)V π(c). For the averge-reward for-
mulation,

∂V π(s)
∂θ

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)

∂V π(c)
∂θ

]

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)

∂
∂θ

[
R(c)−ρ(π)+∑

s′
Pcs′V π(s′)

]]

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)

[
−∂ρ

∂θ
+∑

s′
Pcs′

∂V π(s′)
∂θ

]]

So,

∂ρ
∂θ

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)∑

s′
Pcs′

∂V π(s′)
∂θ

]

− ∂V π(s)
∂θ

∑
s

dπ(s)
∂ρ
∂θ

= ∑
s,c

dπ(s)
∂π(s,c)

∂θ
V π(c)+ ∑

s,c,s′
dπ(s)π(s,c)Pcs′

∂V π(s′)
∂θ

−∑
s

dπ(s)
∂V π(s)

∂θ
∂ρ
∂θ ∑

s
dπ(s) = ∑

s,c
dπ(s)

∂π(s,c)
∂θ

V π(c)+∑
s′

dπ(s′)
∂V π(s′)

∂θ

−∑
s

dπ(s)
∂V π(s)

∂θ
∂ρ
∂θ

= ∑
s,c

dπ(s)
∂π(s,c)

∂θ
V π(c)

For the start-state formulation, ρ(π,s) = V π(s).

∂V π(s)
∂θ

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)

∂V π(c)
∂θ

]

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)

∂
∂θ

[
R(c)+ γ∑

s′
Pcs′V π(s′)

]]

= ∑
c

[
∂π(s,c)

∂θ
V π(c)+π(s,c)γ∑

s′
Pcs′

∂V π(s′)
∂θ

]

= ∑
c

∂π(s,c)
∂θ

V π(c)+ γ∑
c,s′

π(s,c)Pcs′
∂V π(s′)

∂θ

= ∑
s′,c

∞

∑
k=0

γkPr{sk = s′|s0 = s,π}∂π(s′,c)
∂θ

V π(c)

= ∑
s′,c

dπ(s′)
∂π(s′,c)

∂θ
V π(c)

�
Theorem 2: If fw and π satisfy the following 2 conditions,

∑
s,c

dπ(s)π(s,c)[V π(c)− fw(s,c)]
∂ fw(s,c)

∂w
= 0

∂ fw(s,c)
∂w

=
∂π(s,c)

∂θ
1

π(s,c)

then

∂ρ
∂θ

= ∑
s,c

dπ(s)
∂π(s,c)

∂θ
fw(s,c)

Proof:
Combining the two conditions,

∑
s,c

dπ(s)
∂π(s,c)

∂θ
[V π(c)− fw(s,c)] = 0

which can then be added to the expression in Theorem 1 to get
the main result. �

Using the Gibbs distribution, a compatible pair which satisfies
the conditions above is:

π(s,c) =
eθT φs,c

∑c′∈A(s) eθT φs,c′
for c ∈ A(s)

π(s,c) = 0 for c
∈ A(s)

fw(s,c) = wT

[
φs,c −∑

c′
π(s,c′)φs,c′

]

Notice that the results presented hold for any choice of policy
restriction function A. This includes the choice in the paper that
presents the result, which is to let A(s) to be exactly the set of ac-
tions in the MDP. Still, this A can be modified in diferent ways to
suit other scenarios, like giving the controller the freedom to reset
to a starting state. In particular, we will present another choice of
interest: when using pre-defined options, we will modify A such
that it will allow the user to interrupt an option.

5. OPTION INTERRUPTION USING POL-
ICY GRADIENT

712

Under the new notation presented above, we will consider the
continuation and interruption decisions as part of the restriction to
the policy used. Moreover, we will generalize a state as containing
both the option currently used, and the history accumulated.

We will assume that we have an underlying MDP 〈S,A,P,R,γ〉.
For convenience, we will let H = (S×A)∗, and name it the set of
histories. A semi-Markov option will be denoted by o = 〈I ,π,β〉.
The next piece to the puzzle is the policy over options. Under the
new notation, the policy works with S as a set of states in the MDP,
and C = S×O. Notice that now the transition from C to S is not only
dependent on P, but on the options that are used until termination.

We now introduce interruption as part of the policy over options.
Instead of only deciding over fresh options, the policy will have
the freedom to choose a larger history with the same policy, but the
responsibility to do that every step in the underlying MDP. That is,
we will analyse a policy π which works under a decision scheme
with S = H ×S×O×{0,1} and C = H ×O. Again, the transition
from C to S is dependent on the one step transition from the policy
used by the option of c ∈ C. Also, the boolean value in the rep-
resentation of a state s determines whether the option previously
used has terminated or not based on β. The transition form S to C is
dependent on the policy π which will have the following restriction
A:

• A(h,s,ok,1) = {((s,πi(s)),oi)|1 ≤ i ≤ n}

• A(h,s,ok,0) = A(h,s,ok,1)∪{(h(s,πk(s)),ok)}

Then, based on the paper presented earlier, we can use the Gibbs
distribution for each decision point and maintain a function approx-
imator for each decision to obtain a convergent gradient descent
method to determine good interruption and option choice schemes.
The main computational and design issue is to find good features
not only for the policy transitions (s,c) as before, but also for con-
trol on history transtions. For example, we might have to define
feature vectors for the decision of interrupting an option o, after a
history h has been accumulated and the problem was facing state s.

6. FINDING GOOD TERMINATION FUNC-
TIONS FOR OPTIONS

The previous section is an example of how interruption and op-
tion choice were combined into one decision point by modifying
the MDP under which the control operates. One design choice was
to have the termination β part of the non-controlled transition. Still,
we might want to consider the latter as part of the controled be-
haviour. Under function approximation formulation, it will have to
be parametrized by a differentiable function, and then be combined
with the parametrization of the policy over options to obtain only
one decision scheme.

On top of the underlying MDP 〈S,A,P,R,γ〉, and the set of op-
tions O, we need to introduce for each option o a termination func-
tion β(o) parametrized by some vector θ. Moreover, β is differ-
entiable with respect with θ. The decision scheme will be similar
to the one presented for the interruption: non-control states C will
be history-option pairs, control states S will contain the history ac-
cumulated, the option used and one extra underlying control state.
That is, (S,C) = (H ×O×S,H ×O), and we denote their elements
by (s̄, c̄). Next, given s̄ = (h,ok,s) we will define the restriction to
the policy:

A(s̄) = {(h(s,a),ok)|a ∈ A}∪{c̄o := ((s,a),o)|o ∈ O,a ∈ A}

and the policy will be parametrized as follows:

when c̄ = (h(s,a),ok), π(c̄) = {1−β(s̄)}πk(s,a)

when c̄ = ((s,a),oi), π(c̄) = β(s̄)
eθT φs̄,c̄

∑o∈O eθT φs̄,c̄o
πi(s,a)

What follows next is to determine how a β function will influ-
ence the value function generalization. This is done by aplying
the compatibility relation to the meta-policy presented above. The
compatibility condition states that:

∂ fw(s̄, c̄)
∂w

=
∂π(s̄, c̄)

∂θ
1

π(s̄, c̄)
or:

when c̄ = (h(s,a),ok),
∂ fw(s̄, c̄)

∂w
= −∂β(s̄)

∂θ

when c̄ = ((s,a),oi),
∂ fw(s̄, c̄)

∂w
= φs̄,c̄ − ∑

o∈O
π(s̄, c̄o)φs̄,c̄o +

1

β(s̄)
∂β(s̄)

∂θ

What remains is to find good feature schemes and termination
functions. As described before, an option can be thought of a tran-
sition model in which experience gets accumulated and influences
future decisions, until termination. Most of the time, it is hard to
kernelize histories to some feature vectors, but it is rather easy to do
that for transitions in the underlying MDP, as we do in the Sutton
et al. paper. Therefore, one obvious way to extract history features
is to accumulate primitive features as the option accumulates prim-
itive transitions. That is, if h = (s0,a0),(s1,a1), ...,(sn,an) and as
before s̄ = (h,ok,s)

when c̄ = (h(s,a),ok), φs̄c̄ =
n

∑
j=0

φs ja j +φsa

when c̄ = ((s,a),oi), φs̄c̄ = φsa

Under the same umbrella, we could think of termination itself as
a smooth function that has increased probability of termination
around some fixed value for the feature accumulations. If all prim-
itive features are positive valued, then one such definition would
be:

β(h,ok,s) =
σ(h)−σ(h−)

1−σ(h−)

where

σ(h) =
1

1+ e−θT ∑n
j=0 φs ja j

σ(/0) = 0

h− = (s0,a0),(s1,a1), ...,(sn−1,an−1)

One advantage for this formulation is that:

∂β(s̄)
∂θ

= σ(h)
n

∑
j=0

φs ja j −σ(h−)
n−1

∑
j=0

φs ja j

7. ILLUSTRATION
We present a simple illustration of the approach, in an MDP with

a two-dimensional continuous state space. We have 2 controllers
that are trained to increase each feature independently. Starting
from (0,0) for both features, we want to use the 2 controllers one
after the other to obtain maximum return. The state space is 100
by 100, with normally distributed reward, whose peak value is at
position μ = [6060]; the variance of the reward distribution is [20 0
; 0 20]. The maximum reward that can be obtained is 10.

713

Figure 1: Average return per episode

Figure 2: Termination of the first option as a function of
episodes

To solve this problem, one need to apply the first controller, then
the second controller, for the right amount of time, in order to touch
the peak of the reward distribution. We start with sigmoid termina-
tions with mean 20 and variance 10 for all terminations. Then we
sample episodes using these terminations and perform the updates
based on the gradient derivations presented so far. The stepsizes are
2(−10) for controller 1, and 2(−15) for controller 2 (determined
empirically).

Figure 1 shows the average return obtained as a function of the
episode number. Figure 2 shows the average termination time for
the first controller, which tells if the switching was performed cor-
rectly or not. As can be seen, the updates indeed converge to a lo-
cally optimal solution, and the switching time is learned correctly.

8. CONCLUSION AND FUTURE WORK
We presented a model for determining policy termination based

on gradient descent and properties of the logistic distribution. The
fact that the gradient with respect to the performance measure de-
sired can be sampled by interaction with the environment, just as
the return for any state-policy pair, enabled us to provide an algo-
rithm that efficiently computes optimal stochastic time-scales for
prior behaviour strategies. The results could be easily extended
to continuous models, Partially Observable Markov Decision Pro-
cesses, or any other approximation models. In the future, we plan
to get more empirical experience with this approach, and to study
more interesting performance measures for termination. For exam-
ple, there is an interest in finding ways to control the termination
optimization in ways that will favor reasoning at higher levels(i.e.
longer options).

9. REFERENCES
[1] A. G. Barto and S. Mahadevan. Recent advances in

hierarchical reinforcement learning. Discrete Event Dynamic
Systems, 13(4):341–379, 2003.

[2] Ö. Şimşek, A. P. Wolfe, and A. G. Barto. Identifying useful
subgoals in reinforcement learning by local graph
partitioning. In ICML, pages 816–823, 2005.

[3] T. G. Dietterich. Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of
Artificial Intelligence Research, 13:227–303, 1999.

[4] B. Hengst. Discovering hierarchy in reinforcement learning
with HEXQ. In ICML, pages 243–250, 2002.

[5] A. Jonsson and A. Barto. Causal graph based decomposition
of factored mdps. Journal of Machine Learning Research,
7:2259–2301, 2006.

[6] A. Mcgovern and A. G. Barto. Automatic discovery of
subgoals in reinforcement learning using diverse density. In
ICML, pages 361–368, 2001.

[7] N. Mehta, S. Ray, P. Tadepalli, and T. G. Dietterich.
Automatic discovery and transfer of MAXQ hierarchies. In
ICML, pages 648–655, 2008.

[8] I. Menache, S. Mannor, and N. Shimkin. Q-cut - dynamic
discovery of sub-goals in reinforcement learning. In ECML,
pages 295–306, 2002.

[9] R. Parr and S. Russell. Reinforcement learning with
hierarchies of machines. In NIPS, 1998.

[10] D. Precup. Temporal abstraction in reinforcement learning.
PhD thesis, University of Massachusetts, Amherst, 2000.

[11] M. L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, 1994.

[12] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and
Semi- MDPs: A Framework for Temporal Abstraction in
Reinforcement Learning. Artificial Intelligence,
112:181–211, 1999.

[13] R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[14] R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy
gradient methods for reinforcement learning with function
approximation. In NIPS, pages 1057–1063, 2000.

714

